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Impact Test for Hardness of 
Compressed Powder Compacts 

E. N. HIESTAND, J. M. BANE, Jr., and E. P. STRZELINSKI 

Abstract 0 An impact-rebound method of estimating the hardness 
(i.e., the pressure necessary to produce permanent deformation) of 
a compact of powdered solid is evaluated. A steel sphere arranged 
as a pendulum acts as the indenter. Since energy consumed during 
impact is used in doing pressure-volume work, this energy divided 
by the volume of the indentation provides an estimate of the mean 
deformation pressure. Two methods of estimating the dent volumes 
are compared. The simpler method uses equations adopted from 
metallurgy. These estimate the volume from the energy consumed 
during impact and the chordal radius of the dent. The alternate 
method estimates the volume from the displacement of a grid of 
lines projected onto the dented surface at a small angle of incidence. 
The latter method gives slightly smaller volumes than the former. 
When plotted in various ways, the data obtained yield slopes and/or 
intercepts consistent with the adopted metallurgical equations. 
Therefore, these equations are considered to provide: (a) an a o  
ceptable description of the indentation process and (b)  the more 
satisfactory method of estimating the hardness of compacts. Plots 
of log pressure uersus relative density appear to be linear. Extrapola- 
tions of these plots to a relative density of unity provide estimates of 
the properties of a single polycrystalline mass of the powdered 
material. 
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Diagram-pendulum impact device 

In previous communications (1-3), the senior author 
indicated that the mechanical properties of solids are 
important fundamental properties which affect the flow 
and bonding properties of solids. Shlanta and Miloso- 
vich (4) studied some of the time-dependent effects, and 
Shlanta ( 5 )  reviewed the importance of plastic deforma- 
tion in tableting. Huffine (6) also considered these prop- 
erties. Because the anelastic properties of crystalline 
solids are dependent not only on the strength of the in- 
termolecular interactions but also on the degree of im- 
perfection of the molecular arrangement, the plastic 
yield pressure is not an intrinsic property of the solid 
state of a chemical compound in a given polymorphic 
form. The procedure followed in crystallizing the com- 
pound and the subsequent working of the solid may in- 
fluence the plastic yield value. 

Hardness may be defined as the resistance of a solid to 
permanent deformation (7). Indentation methods are 

standardized and are common practice for assessing the 
hardness of metals. Previous reports in the pharma- 
ceutical literature (8-10) of the use of indentation meth- 
ods have not established whether the equations used 
with metals may be applied to compacts of organic ma- 
terials. l t  is the purpose of this article to explore this 
aspect for the dynamic, i.e., the impact-rebound, method 
of hardness testing. The theoretical equations adopted 
from the metallurgical field are described later in this 
communication. 

APPARATUS 

The pendulum arrangement for controlling the pathway of a 
sphere is used in this apparatus. This arrangement simplifies the 
control and measurement of the initial and rebound height. Figure 1 
shows the apparatus diagrammatically. Figure 2 is a photograph of 
the apparatus (an air shield was removed to expose the apparatus). 

Two dies are used in these studies: one is of square cross section 
and the other is circular. Both have a cross-sectional area of 2.25 h2. 
Eight to twenty grams of powdered solid is used in the die. The 
compact is pressed with a hydraulic press’. The die is held between 
the punches only by the friction with the powder, thereby permitting 
both punches to move. To increase the probability of a series of 
tablets having identical properties, the pressure is raised to a selected 
value and maintained for a definite time. Figure 3 shows the two dies 
with one punch and the compact in place. 

EXPERIMENTAL, PROCEDURE 

After removal from the press, the compact is pushed to within a 
couple of millimeters of the surface of the die. The die, F, containing 
the compact, B, and longer punch, G ,  are clamped into the ap- 
paratus by means of clamps, J. The back-up block, H, is moved up 
to the punch and its bolts are tightened only moderately. Bolt I is 
then used to push against the support post, N, until enough force is 
developed to push the back-up block, the punch, and the compact 
until the compact is moved flush with the die surface. The bolts on 
the back-up block are then tightened. Thus, only one face of the solid 
is left unsupported. 

The sphere, A, is raised against the pointed pole of the magnetic 
hold, E. Both a.c. and d.c. currents are used initially to cause the 
sphere to vibrate against E and seek an equilibrium orientation. 
Before release, the a.c. signal is removed and the sphere comes to rest 
held by the d.c. field only. The sphere is released by opening the d.c. 

1 Model 341-20, Loomis Engineering and Manufacturing Co., Cald- 
well, N. J. 
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Figure I-Schematic of arrangement of pendulum impact device. 
Key: A, steel sphere: B, powder compact: C ,  wire support of pen- 
dulum; D ,  scale of angle .from vertical: E, magnetic hold-release: 
F,  die; G,  punch: H,  back-up block; I ,  back-up bolt; J ,  die clamp; 
K ,  stop (winch driven): L ,  lereling screws; M ,  light; and N ,  support 
post. 

circuit. At the same time a light, M, turns on and a camera shutter is 
opened to make a time exposure of the rebound of the sphere. 

An electrically driven winch also starts when the sphere is released. 
With proper timing, it moves a metal stop between the compact and 

Figure >Two dies and punches with compact in place as used in the 
impact test. A separate compact after removal,from the die is shown 
also. 

the sphere after the rebound occurs. This prevents a second impact 
from occurring. 

If desired, additional hits may be made on the same spot. An 
“off-center” hit will be evident by an “off-side” rebound. However, 
the magnetic hold and release arrangement nearly always puts the 
sphere on target. 

Measurement of Indentation-The volume of the indentation 
may be obtained by the optical procedure outlined in a subsequent 
section. This procedure permits an evaluation of the volume without 
removing the die and compact. This feature is essential if successive 
hits are to be made on the same compact. 

Theoretical equations are derived for calculating the volume from 
the initial and rebound heights of the sphere and the chordal diam- 
eter of the dent. This diameter may be obtained either by direct 
microscopic measurement or by measurement from an enlarged 
photograph. With some materials, shadowing lightly with black 
paint increases the contrast at the edges sufficiently to make the 
diameter measurement easier and more precise. Spraying at a low 
angle of incidence produces the shadow. A mean value of five 
determinations and a statistical evaluation of errors are useful in 
these measurements. 

Estimation of Mean Deformation Pressure-The assumption of a 
constant mean deformation pressures, P, is mathematically equiv- 
alent to the calculation of the average mean deformation pressure 
because 

where P, is the mean pressure for penetration z ,  V is the variable 
volume, Vp is the permanent dent volume, and Ep is the work of de- 
formation. If all the energy lost by the sphere is assignable to Ep, 
then Ep = Ei - E,, where Ei and E, are the respective initial and 
rebound potential energies of the sphere. Therefore, P = (Ei - Ea)/ 
V,. This simple equation is all that is needed to estimate P if the 
volume is measured directly. Since there is no real advantage to the 
awkward terminology, average mean deformation pressure, only 
mean pressure will be used hereafter. 

Equation 10 permits P to be estimated by measuring the chordal 
diameter, 2a, of the dent instead of its volume. A similar equation, 
12, estimates the volume of the dent. These calculations introduce 
additional assumptions. Before they are used, it must be demon- 
strated that they yield good estimates. Since both Eqs. 10 and 12 
contain the same assumptions in their derivation, it was considered 
sufficient to test only one of them. An independent measurement 

Figure 2-Photograph ofpendulum impact device. 
2The pressure is not a constant over the sphere-compact inter- 

face because of friction and stress gradients in the compact. 
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Figure 6-Plot of data scaled from an enlarged image of the type 
shown in Fig. 5 .  * This scale is mugniJied 66.6 times the true dent size. 

Figure 4-Schematic of arrangement for determining dent volume. 
Key: A ,  slide projector; B,  transparency containing grid of lines; 
C ,  camera; D ,  ,first sirrfiice mirrors; E ,  compact; F, surface of in- 
dentation; 8 ,  angle of incidence of projected image; d, location of an 
image of vertical lines on undented surJace; and d‘ ,  Iocation of image 
of the same vertical line on dentedportion of surface. 

of the volume appeared to be easier than a direct measurement of 
pressure. 

Measurement of Dent VolumeThe surface characteristics and 
the fragile nature of some compacts restrict the suitable methods for 
measuring dent volume. The following optical method was selected 
because it did not disturb the compact. In fact, the data are ob- 
tained without removal of the compact from the apparatus. 

An image of a grid of vertical lines was projected horizontally a t  a 
small angle of incidence, 8,  onto the tablet surface. The lines of the 
grid were spaced to produce equally spaced vertical lines on the 
tablet surface. At the indentation, the vertical lines became curved, 
the horizontal displacement being proportional to the depth of the 
indentation. Figure 4 shows schematically the arrangement. By 
photographing the tablet, the image of the grid could be recorded. 
Figure 5 shows a typical photograph of a grid image on a dented 
compact. To estimate the displacement accurately, the photograph 

Figure 5-Magnified photograph of grid image on compact surface. 
Horizontal line spacings on the compact surface are determined with 
a cathetometer. The photographic and projection magniJication 
factor is determined by change in spacing of these lines. 

was made with transparency film and projected onto a large sheet of 
plain white paper. 

The depths determined from the photograph were plotted against 
the distance from an arbitrary point near one edge of the dent. A 
smooth curve was drawn through the points and the center, and 
maximum depth was obtained from these “smoothed data.” To 
simplify the volume calculation, the data were replotted with trans- 
posed axes. The log of the distance above the maximum depth, d, 
was plotted against the log of the chordal radius, a d .  These data 
approximated a straight line on the log-log plot. Therefore, the cross- 
sectional surface of the dent is assumed to be described by the equa- 
tion3 

d = k&‘ (Eq. 2) 

where k and n are constants which may be determined from the log- 
log plot. Figures 6 and 7 show typical examples of the two plots used 
to determine k and n. Using Eq. 2, a simple equation for the volume 
is obtained by assuming circular symmetry-viz., 

” 

where a is the maximum value of ad. The value of a used in Eq. 3 is 
the same value used later in Eq. 12; n and k were obtained by an 
iteration procedure with a computer to yield a least-squares fit to the 
data. In Fig. 7, a line of slope 2 is shown to permit a comparison of 
the data to a spherical shape. 

A Simple Theoretical Model-Tabor’s (7) equations for the im- 
pact-rebound process are based on a simple model. To the authors’ 
knowledge, this theory has not been discussed previously in the 
pharmaceutical literature. Therefore, a brief treatment of the con- 
cepts should be useful for clarifying the assumptions made and the 
deviations of experimental values from the calculated ones. 

The rebound process is a result of elastic deformation only. It is 
equal to the reverse process of pushing the sphere back into the dent 
to produce the same contact area, assumed to be the contact area 
that has a chordal radius of a. Hertz’ equation for the elastic defor- 
mation of a sphere and semiinfinite body of homogeneous, isotropic 
solids is used. Three elasticity relationships are useful-uiz., 

z = a2 (k-k) 

a For a spherical indentation of radius r, when d2 << a2, k = I/v, 
and n = 2. Note that n = 2 also 1s a parabola and as long as d2 << ax, 
the volumes of the two configurations may be considered equal. 
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Figure 7-The same data are used here as in Fig. 6 but the origin has 
been transposed to the bottom of the dent. The k and n for Eq. 2 are 
obtained from a computer analysis which gives the line of this plot; 
d,,,. is the maximum ualue of d based on Fig. 6. 

where z is the approach distance (elastic penetration) of the sphere 
into the dent, Fa is the force at penetration z ,  a! is the chordal radius 
of the contact area at penetration z, rl and rz are the radii of curva- 
ture of the two surfaces before elastic deformation, and 

where u is Poisson’s ratio and E is the modulus of elasticity. Sub- 
scripts 1 and 2 refer to the spherical indenter and to the permanently 
dented surface, respectively. Equations 4 and 5 may be used to show 
that the energy of elastic deformation, E,, required to push the 
sphere into the dent to produce contact over a circle of radius a is 
given by 

where the force at maximum penetration, F, is equal to P m 2 .  
Combining Eqs. 6 and 8 gives 

E, = 3/l~P2irea3f(E) 0%. 9) 
Note that Eq. 9 depends only on the elastic deformation, as does the 
rebound process. Sincef(E) is not known, a complete check of Eq. 9 
is not readily made. However, if P (here P is the pressure at maxi- 
mum penetration) is a constant for different values of a,  a plot of log 
EJmg versus log a should have a slope of 3. Figure 8 shows such a 
plot. For most of the examples, the correlation is good. Therefore, it 
is assumed that Eqs. 8 and 9 describe the rebound process satis- 
factorily and that P is essentially a constant. 

Using Eq. 3, one may show that when the permanent dent is a 
spherical dent with the depth much less than a, it will have a volume, 
V,, equal to na4/4r2. This may be used to eliminate rz in Eq. 8.  If it is 
also assumed that the P in Eq. 1 is equal to the P in Eq. 8 ,  one may 

combine these equations and solve for P to obtain 

4r1 P = ~ 4 ( E p  + ’/&) 

or 

p = 43’(hi - 3/&) 
ira * 

where m is the mass of the sphere, g is the gravitational acceleration 
constant, hi is the initial height of the sphere, and h, is the rebound 
height. Equation 1 1  assumes no losses of energy other than the pres- 
sure volume work of the permanent deformation. Since PVp = 
mg(hi - hJ, one may divide this by Eq. 11 to obtain Vp:  

1ra4 hi - h, 
vp = aK (i;....) 

Figure 9 is a plot of the volumes calculated using Eq. 12 uersus the 
“photo” volumes, i.e., the volumes estimated from photographs such 
as Fig. 5. Equation 12 yields slightly larger values than the photo 
volumes. Obviously, both values may be in error. Errors in the 
photo volumes are expected to have random distribution, but 
undetected systematic errors are possible. These could lead to an 
underestimate of the dent volumes. However, E?q. 12 estimates may 
be expected to be slightly larger than the true volumes because 
frictional, accoustical, and hysteresis losses have been neglected. 
Also the mean deformation pressure may not be a constant during 
the impact because of the dynamic nature of the process. The last 
assumes P is larger when the sphere is moving at a larger velocity 
and goes to a minimum as the sphere velocity goes to zero‘. This too 
would result in an overestimate of the volume by Eq. 12. However, 
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Figure 8-Comparison of Eq. 9 with the experimentaI data. Solid 
lines have theoretical slope 3. Key: *, spray-dried lactose, Lot B, 
pr = 0.749; D, sitostero!, pr = 0.868; A, sucrose, pr = 0.818; 0, 
spray-dried lactose, Lot A ,  pr = 0.690; and m, a tablet formulation, 
pr = 0,574. 

4Even so, P in Eq. 9 may be constant because it is concerned only 
with P at zero velocity of the sphere. 
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Figure 9---Comparison of the values obtained by two methods of 
estimating the rolumes of the permanent indentation. Values based 
on Eq. I2  are somewhat larger than those based on thephotographs. 

consolidation beneath the dent during penetration could cause P to 
increase. This effect should be detected by a more rapid increase in a 
than for a slope of 3 in Fig. 8. Only one portion of one of the plots 
shows significant deviation in this direction. Therefore, this effect 
appears generally to be insignificant. 

Based on these studies, the authors conclude that probably Eq. 12 
overestimates V ,  by a small amount and that the companion Eq. 11 
therefore would underestimate the mean pressure of plastic deforma- 
tion. However, these small deviations from the true values are not 
expected to be significant impediments to the application of this 
technique of hardness testing. 

Figure 10 shows a plot of log P versus p,., where pr is the relative 
density of the compact, i..., the bulk density divided by the absolute 
density of the crystalline materials. Extrapolations to pT = 1 may be 
questionable but are considered useful estimates of the value of P for 
the crystalline solid. 

Additional Experimental Results-The area over which molecular 
forces may act after two solids have been pressed together depends 
on the effectiveness of the relieved elastic stresses in producing 
separation of the surfaces. For the geometric model considered here, 
this "contact area" is a function of the ratio of r&i. If, in deriving 
Eq. 10, r2 had not been eliminated, one could have obtained 

5 E  r2/r1 = 1 + - 2 
8 E* 

Rearranging Eq. 6 and replacing a3 with (F/p?r)'/Z, one notes that 

Obviously, Ee/Ep is not a constant independent of the applied force F 
since rl/rz is a function of F. Combining the above with Fq. 13 yields 

Since F'/p = (P?r)*/2a when P is constant, this relationship may be 
tested in a manner analogous to the test of Eq. 9. A plot of E,/E. 
cersus a is shown in Fig. 1 1. The lines in Fig. 11 were drawn through 
the - 5/s intercept. Equation 15 contains both the plastic and elastic 

parts of the impact process. Since this test is independent of the 
photo method and any associated errors in it, the results shown in 
Fig. 11 strongly reinforce the argument that the model and the 
equations provide good estimates of the yield pressure. 

The following extension of these concepts to the interaction be- 
tween particles was reported previously (11). If one considers a 
sphere of radius rl at rest in a spherical dent of radius r2, the separa- 
tion, S, of the two spherical surfaces at a chordal radius. a, from the 
point of tangency is given for a << r, by 

Using Eq. 13 to eliminate r2 and rearranging give 

If it is assumed that the attraction resulting from intermolecular 
forces is effective over an area A,  = mC2 at which point a = ac and S 
equals S,,, the maximum separation effective in bonding, then one 
obtains 

Combining this with Eq. 15 yields, for a single contact point, 

8S,F'/z 
3 ?r'/2P3/2f( E )  

A , =  I____ 

This equation predicts that A,  should increase as the 1/2-power of the 
force applied and decrease as the 3/r-power of the plastic yield value 
of the yielding solid. 

If one extends this to the application of a total force, Ft,  on a given 
cross-sectional area of a powder bed of monodispersed particles, and 
if one assumes that only one of the particles deforms so that after 
elastic rebound one of each pair of contacting particles retains a 
radius of rl, it is obvious that the total effective contact area will be 
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lactose, Lot A;  A, sucrose; and 0, tablet formulation. 
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Figureill-Comparison of the experimental data with Eq. 15. Tfie 
lines are drawn through the theoretical value of the intercept, - 6 / 8 .  

Key: 0, spray-dried lactose, Lot A ,  pr = 0.690; a, spray-dried lactose, 
Lot B, pr = 0.749; *, sucrose, pr = 0.818; A, tablet formulation, 
p r  = 0.574; A, tablet formulation, p r  = 0.7S2; and H, sitosfero!, 
pr = 0.868. 

NJ,, where N,  is the number of contacts. If the packing remains the 
same, N ,  a l/rla and F a: rlz. Therefore, Ft = N J ,  0: l/r1. Qualita- 
tively, this conforms with experience, i.e., smaller particles form 
more cohesive powder beds. According to Krupp (12), with small 
particles, attractive forces may deform contacting surfaces without 
externally applied loads. This effect must be added to the relation- 
ship that considers only the role of mechanical properties. 

DISCUSSION 

The relationship between the mean pressure of deformation and 
the yield stress is not simple, especially in a heterogeneous, porous 
compact. Friction and other factors influence this relationship. In 
the absence of friction, the mean pressure is equal to approximately 
three times the yield stress of the solid (7). Since the exact relation- 
ship is unknown in the real case, it is probably better to avoid any 
statement on the yield stress. The mean pressure required to produce 
the indentation may be used as an indication of the hardness, i.e., 
the resistance to permanent deformation. 

Obviously, pressures as large as those shown in Fig. 10 can only be 
developed by the rapid deceleration of the sphere. Tabor (7) derived 
Eq. 20 to estimate the time, t ,  after contact required to bring the 
velocity of the sphere to zero: 

Using this equation, values in the range of sec. are obtained. 
The time of contact is not dependent on the velocity of the sphere 
unless P is a function of velocity. P has been assumed constant in all 
the equations adopted from Tabor’s book (7). The time of impact is 
much less than the time of compression in a rotary tablet machine. 

Since the impact-rebound technique permits the separation of the 
elastic from the anelastic displacement and energy, it may be feasible 
to characterize the elastic properties also. This aspect is being ex- 
plored in the authors’ laboratory. 

The assumptions made in the use of this technique may cause one 
to question the validity of the method. Certainly, not all energy 
losses are due to plastic deformation. However, some workers (13) 
reported coefficients of restitution greater than 0.98 when hard 
materials were used with small impact velocities to avoid permanent 
deformation. Therefore, it is concluded that the basic concepts are 
essentially correct. 

CONCLUSION 

The use of an impact arrangement permits the energy and volume 
of the permanent deformation to be determined. The average de- 
formation pressure is calculated from the same data. Equations 
used for metallurgical specimens have been shown to have appli- 
cability in the characterization of compacts of organic solids. 
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